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1 Introduction 

In statistical data analysis, it if often relevant to indentify influential observations, i.e., individual 
observations that have a noticeable effect on the results of the analysis. The vast majority of 
theoretical and empirical literature about influential observations is based linear regression with 
the ordinary least squares (OLS) method. However, it is also relevant to identify influential 
observations in other types of regression analysis, for instance in stochastic frontier analysis 
(Aigner et al., 1977; Meeusen and van den Broeck, 1977). Identifying influential observations is 
particularly important when the results of the statistical analysis can have substantial effects on 
the ‘real world’, e.g., if the results of a stochastic frontier analysis are used for regulating prices 
and revenues in natural monopolies, which is done in several countries. 

2 Cook’s distance in linear regression models 

The most frequently used method for detecting influential observations is the so-called Cook’s 
Distance, which was introduced by Cook (1977, 1979). Cook’s Distance is based on a linear 
regression model: 

yi = β)xi + εi ∀ i = 1, . . . , N, (1) 

where yi is the the dependent variable, xi is a vector of k explanatory variables (including a 
constant), β is a vector of k regression coefficients, εi is an error term, subscript i indicates the 
observation, and N is the number of observations used in the analysis. 

The Cook’s Distance of the ith observation is defined as: 

(2)

where ŷj ≡ β)xj ˆ is the predicted value of the dependent variable at the jth observation based on 
the estimated coefficients β̂  that are obtained from a regression that includes all N observations, 
ŷj(i) ≡ β̂) x(i) j is the predicted value of the dependent variable at the jth observation based on the 
estimated coefficients β̂(i) that are obtained from a regression that excludes the ith observation 
(and, thus, only includes N −1 observations), k is the number of explanatory variables (including 
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a constant), and
 ∑∑ 2σ̂2 = N 

i=1 ε̂i /(N − k) is the estimated variance of the error term εi with 
ε̂i = yi − β̂/xi being the residual of the regression analysis that includes all N observations. 

There is no consensus on a cut-off point that indicates whether the influence of an observation 
is “large” not not. Several different cut-off points have been suggested, e.g., 1, 0.5, 4/N , and 
the 50% quantile of an F-distribution with p and N − p degrees of freedom (see, e.g., Cook and 
Weisberg, 1982; Bollen and Jackman, 1990). 

Besides having no clear cut-off point, Cook’s Distance has been criticised for that under certain 
circumstances, an observation can have a substantial influence on the estimated coefficients but 
only a minor influence on the predicted values of the dependent variable so that this observation 
has a low Cook’s Distance in spite of its large influence on the estimated coefficients (Kim, 2017). 
As in most empirical applications, analysts are more interested in the coefficients than in the 
predicted values of the dependent variable, this potential weakness of Cook’s distance can be a 
major problem. 

3 Pseudo-Cook’s distance in stochastic frontier analysis 

A stochastic frontier model is generally specified as: 

yi = β)xi − ui + vi ∀ i = 1, . . . , N, (3) 

where yi is the logarithmic output quantity, xi is a vector of k explanatory variables (e.g., a 
constant, logarithmic input quantities, . . . ), β is a vector of k regression coefficients, ui is a 
non-negative inefficiency term, vi is a random error term with an expected value of zero that 
captures statistical noise, subscript i indicates the firm, and N is the number of firms used in 
the analysis. Most empirical analyses assume that the non-negative inefficiency term ui follows 
a half-normal, truncated-normal, or exponential distribution, while almost all empirical analyses 
assume that the random error term vi follows a normal distribution. This specification is usually 
estimated by the maximum-likelihood method based on the distributional assumptions of the 
inefficiency term ui and the statistical noise term vi. 

Strictly speaking, Cook’s Distance is not applicable to stochastic frontier analysis because it is 
based on the assumption that the error term εi is normally distributed, while stochastic frontier 
analysis assumes a composed error term εi = −ui+vi that is not normally distributed unless there 
is no inefficiency, i.e., ui = 0 ∀ i = 1, . . . , N (Wheat et al., 2019, p. 23). However, the concept 
of Cook’s distance can be applied to stochastic frontier analysis and a pseudo-Cook’s distance 
can be calculated by equation (2). When this equation is applied to stochastic frontier analysis, 
ŷj ≡ β̂)x )

j and ŷj( ) ≡ β̂i x(i) j are the predicted frontier values of the logarithmic output quantity 
of firm j based on the maximum-likelihood estimates of the coefficients based on all N firms and 
based on all firms except for firm i, respectively. As in the original Cook’s distance measure, k is 
the number of explanatory variables. The 2 σ̂ choice of  is the only tricky part of applying Cook’s 
distance to stochastic frontier models. One could choose the variance of the random error term vi 

because it indicates to which extent the frontier values of individual firms fluctuate around the 
‘true’ population 2 σ̂  frontier function β)xi (similar to  in linear regression models that indicates to 
which extent the observed values of the dependent variable fluctuate around the true population 
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regression line β/xi). However, the estimated variance of the random error term vi can become 
zero so that the pseudo-Cook’s distance based on this variance would be undefined. Furthermore, 
removing a firm from the sample could substantially change the maximum likelihood estimate 
of the division of the total error variance between statistical noise (vi) and inefficiency (ui) so 
that the estimated variance of the random error term vi is much less stable than the estimated 
variance of the error term in linear regression models. Therefore, I suggest to define σ̂2 as the( ) ) (
estimated variance of the composed error term

∑ ∑ 2 
εi = −ui + N 

i, i.e., σ̂2v = i=1 ε̂i − ε̄̂  /(N − k) 
with ε̂i = yi − β̂/xi being the residual of the regression analysis that includes all N observations 
and

 ∑∑
ε̄̂ ≡ N−1 N 

i=1 ε̂i. 
Given that the influence of an observation is defined in relative terms, i.e., by comparing 

it to the influence of the other observations (Belsley et al., 1980, p. 11) and that there is no 
consensus on an absolute cut-off value of the Cook’s distance for indicating a large influence, 
the choice of a value for ˆ2σ  is only of minor importance, because the value of 2σ̂  affects the 
(pseudo-)Cook’s distances of all observations in a proportional way so that the choice of ˆ2 σ

does not affect the (pseudo-)Cook’s distance of one observation relative to the (pseudo-)Cook’s 
distances of all observations. 

If one is mainly interested in the estimated coefficients ( β̂) of a stochastic frontier model, the 
critique of Kim (2017) also applies to the pseudo-Cook’s distance of stochastic frontier models. 
However, if the primary interest of a stochastic frontier analysis is to obtain the frontier, e.g., 
for regulating natural monopolies, it is an advantage rather than a potential weakness that 
the pseudo-Cook’s distance (as the Cook’s distance in linear regression analysis) evaluates the 
influence on the predicted values rather than on the estimated coefficients. 

4 Pseudo-Cook’s distance for efficiency estimates 

In many stochastic frontier analyses, the primary interest are not the frontier values but the 
efficiency estimates, e.g., when the efficiency estimates are used to regulate prices and revenues 
in natural monopolies. In these cases, it could be relevant to assess the influence of each firm in 
the data set on the efficiency estimates, e.g., by a modified pseudo-Cook’s distance measure: 

 ∑  )  (
Di 

eff = 
∑N 

j=1

(
ef f j − ef f j(i)

)2 

k σ̂2 
eff 

, (4)
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where  eff j is the efficiency estimate of the jth firm derived from a stochastic frontier analysis 
that is based on all N observations,  eff j(i) is the efficiency estimate of the jth firm derived 
from a stochastic frontier analysis that excludes the ith observation (and, thus, only includes 
N −1 observations), k is the number of explanatory variables (including a constant), and σ̂2 =( ) ) ( eff∑ 2N  

i=1 eff i − eff /(N − 1) is the estimated variance of the efficiency estimates with eff = 
N−1 N  

i=1 eff i 
 ∑∑

being the average efficiency estimate (based on all N observations). 
For given variances of ui and vi, the influence of an observation on the predicted values and 

on the efficiency estimates is very similar. However, the efficiency estimates are very sensitive 
to the estimated variances of ui and vi. Hence, an observation that has a notable influence on



the estimated variances of ui and vi usually has a notable influence on the efficiency estimates 
while it does not necessarily have a notable influence on the predicted values. 

5 Calculating pseudo-Cook’s distances with the “R” package “frontier” 

The following command loads the “frontier” package: 

library( "frontier" ) 

The following command loads a data set: 

data( "front41Data" ) 

The following commands estimate a Cobb-Douglas production frontier and display the esti­
mation results: 

cobbDouglas <- sfa( log( output ) ~ log( capital ) + log( labour ), 
data = front41Data ) 

summary( cobbDouglas )  

## Error Components Frontier (see Battese & Coelli 1992)  
## Inefficiency decreases the endogenous variable (as in a production function)  
## The dependent variable is logged  
## Iterative ML estimation terminated after 7 iterations:  
## log likelihood values and parameters of two successive iterations  
## are within the tolerance limit  
##  
## final maximum likelihood estimates  
## Estimate Std. Error z value Pr(>lzl)  
## (Intercept) 0.561619 0.202617 2.7718 0.0055742 **  
## log(capital) 0.281102 0.047643 5.9001 3.632e-09 ***  
## log(labour) 0.536480 0.045252 11.8555 < 2.2e-16 ***  
## sigmaSq 0.217000 0.063909 3.3955 0.0006851 ***  
## gamma 0.797207 0.136424 5.8436 5.109e-09 ***  
## --­
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1   
## log likelihood value: -17.02722  
## 
## cross-sectional data  
## total number of observations = 60  
##  
## mean efficiency: 0.7405678  

The following commands obtain the pseudo-Cook’s distances for the predicted values, visualize 
them with a histogram, and identify the three observations with the largest pseudo-Cook’s 
distance: 
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front41Data$cooksDistPred <- cooks.distance( cobbDouglas, asInData = TRUE, 
progressBar = FALSE ) 

hist( front41Data$cooksDistPred, 50 ) 

Histogram of front41Data$cooksDistPred
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front41Data[ front41Data$cooksDistPred > 0.3, c( "firm", "cooksDistPred" ) ] 

## firm cooksDistPred 
## 12 12 0.8579408 
## 35 35 0.3528187 
## 57 57 0.5049758 

The following commands obtain the pseudo-Cook’s distances for the efficiency estimates, visu­
alize them with a histogram, and identify the three observations with the largest pseudo-Cook’s 
distance: 

front41Data$cooksDistEff <- cooks.distance( cobbDouglas, 
target = "efficiencies", asInData = TRUE, progressBar = FALSE ) 

hist( front41Data$cooksDistEff, 50 ) 
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Histogram of front41Data$cooksDistEff
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front41Data[ front41Data$cooksDistEff > 0.3, c( "firm", "cooksDistEff" ) ] 

## firm cooksDistEff 
## 12 12 7.0858707 
## 35 35 1.8668939 
## 57 57 0.4409058 

The following commands visualize the relationship between the pseudo-Cooks distances for the 
predicted values and the pseudo-Cooks distances for the efficiency estimates (on a logarithmic 
scale): 

library( "miscTools" )  
compPlot( front41Data$cooksDistPred, front41Data$cooksDistEff, log = "xy" )  
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The pseudo-Cooks distances for the predicted values and the pseudo-Cooks distances for 
the efficiency estimates are highly correlated but the pseudo-Cooks distances for the efficiency 
estimates are generally slightly larger than the pseudo-Cooks distances for the predicted values. 

6 Discussion 

It is important to note that observations that are identified to be influential should not be auto­
matically excluded from the analysis, because the influence of the observation on the regression 
results is not necessarily ‘bad’ (i.e., diverting the regression results away from the ‘true’ values) 
but can also be ‘good’ (i.e., directing the regression results towards the ‘true’ values). There­
fore, observations that are identified to be influential should be carefully checked for data errors 
and potential unobserved heterogeneties between these observations and the other observations. 
Only if data errors are found and cannot be corrected or if unobserved heterogeneities are found 
and cannot be addressed (e.g., by adding further explanatory variables), influential observations 
should be excluded from the analysis. 
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